Suicide Gene Reveals the Myocardial Neovascularization Role of Mesenchymal Stem Cells Overexpressing CXCR4 (MSCCXCR4)
نویسندگان
چکیده
BACKGROUND Our previous studies indicated that MSC(CXCR4) improved cardiac function after myocardial infarction (MI). This study was aimed to investigate the specific role of MSC(CXCR4) in neovascularization of infarcted myocardium using a suicide gene approach. METHODS MSCs were transduced with either lentivirus-null vector/GFP (MSC(Null) as control) or vector encoding for overexpressing CXCR4/GFP. The MSC derived-endothelial cell (EC) differentiation was assessed by a tube formation assay, Dil-ac-LDL uptake, EC marker expression, and VE-cadherin promoter activity assay. Gene expression was analyzed by quantitative RT-PCR or Western blot. The suicide gene approach was under the control of VE-cadherin promoter. In vivo studies: Cell patches containing MSC(Null) or MSC(CXCR4) were transduced with suicide gene and implanted into the myocardium of MI rat. Rats received either ganciclovir (GCV) or vehicle after cell implantation. After one month, the cardiac functional changes and neovascularization were assessed by echocardiography, histological analysis, and micro-CT imaging. RESULTS The expression of VEGF-A and HIF-1α was significantly higher in MSC(CXCR4) as compared to MSC(Null) under hypoxia. Additionally, MSC(CXCR4) enhanced new vessel formation and EC differentiation, as well as STAT3 phosphorylation under hypoxia. STAT3 participated in the transcription of VE-cadherin in MSC(CXCR4) under hypoxia, which was inhibited by WP1066 (a STAT3 inhibitor). In addition, GCV specifically induced death of ECs with suicide gene activation. In vivo studies: MSC(CXCR4) implantation promoted cardiac functional restoration, reduced infarct size, improved cardiac remodeling, and enhanced neovascularization in ischemic heart tissue. New vessels derived from MSC(CXCR4) were observed at the injured heart margins and communicated with native coronary arteries. However, the derived vessel networks were reduced by GCV, reversing improvement of cardiac function. CONCLUSION The transplanted MSC(CXCR4) enhanced neovascularization after MI by boosting release of angiogenic factors and increasing the potential of endothelial differentiation.
منابع مشابه
Exosomes Secreted from CXCR4 Overexpressing Mesenchymal Stem Cells Promote Cardioprotection via Akt Signaling Pathway following Myocardial Infarction
Background and Objective. Exosomes secreted from mesenchymal stem cells (MSC) have demonstrated cardioprotective effects. This study examined the role of exosomes derived from MSC overexpressing CXCR4 for recovery of cardiac functions after myocardial infarction (MI). Methods. In vitro, exosomes from MSC transduced with lentiviral CXCR4 (Exo(CR4)) encoding a silencing sequence or null vector we...
متن کاملComparative Analysis of Expression of Chemokoine Receptors CXCR4, CXCR6, CCR1 and CX3CR in Human Adipose-Drived Mesenchymal Stem Cell with Valproic Acid
Introduction: Chemokine receptors are found on the surface of stem cells. There have been 19 distinct chemokine receptors described in mammals. Chemokines are major players in migration and homing. Therefore, changes in their levels or function can help us to increase the migratory potential of these cells. Valproic acid differs in structure from other drugs in common use. The way in which Va...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملChemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability
Objective(s):The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a...
متن کاملEstablishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor
Objective(s): Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. Materials and Methods: We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, ...
متن کامل